If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+20x-9=0
a = 10; b = 20; c = -9;
Δ = b2-4ac
Δ = 202-4·10·(-9)
Δ = 760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{760}=\sqrt{4*190}=\sqrt{4}*\sqrt{190}=2\sqrt{190}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{190}}{2*10}=\frac{-20-2\sqrt{190}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{190}}{2*10}=\frac{-20+2\sqrt{190}}{20} $
| 3x+16=2x+58 | | -2x-1=-1(2x+1) | | 4y-50=15 | | k−16=−21 | | 4(7x-2)=-148 | | -18x+54=21 | | 8/x+8=5/10 | | 1+x+5=3x+5 | | x+4/3+x+3/2=8 | | 3x-7x-13=-4x+3-13 | | 0.18(y-4)+0.04y=0.12y-1.4 | | 4f=18.8 | | -4h+-8=8 | | 4000-5x=45x | | -10x+45-6x-5=2-10x | | 9/3=b-7/8 | | -5(4t-2)+6t=5t-6 | | (8x-13)=(5x+17) | | -7469=97x | | 2/3g=8/15 | | 3(1-5p)=93 | | (8x-13)=(5x | | -4x-6x=10x | | y²+9y-2=0 | | x²+7=24 | | n/16=-2 | | -5x+4{2x-5)=-50 | | 9x-15=6x+36 | | x+12+5x-20=180 | | 5x+4000-10x=45x | | (b+45)+90+(2b-90)=540 | | 2x÷2=56 |